Introduction

- About MAADI Group
- Design Innovation
- Aluminum: the Better Material Choice
- Sustainability
- Awards Received

Technical Specifications

- Advantages
- Live Load Capacity psf (kPa)
- Destructive Testing
- Vibration Testing

Customization

- Bridge end Configuration
- Guardrail
- Structure Connection
- Decking Materials
- Decking Materials Comparison Charts
- Transition Plate
- Options

Applications

- Military
- Architectural
- Cantilever Walkway
- Industrial
- Maritime
- Park & Golf Course
- Skywalk
- Entryway
Bota Bota Spa sur l’eau Gangways Project, Montréal, Québec
The Make-A-Bridge® modular system’s Meccano®-style design approach optimizes bridge performance and aesthetics. MAADI Group’s patented bridge system offers a unique design solution that is customized to your specifications and needs. Design options offer versatility in a cost-effective and durable superstructure.

MAADI Group works with your team, from design concept through final installation to bring accessibility and sustainability together for your next project.
About MAADI Group

Since 2003, MAADI Group, Inc. has engineered optimal functionality into pedestrian bridge structures. As structural engineers, we create sustainable access infrastructure for commercial, civil, industrial, and recreational construction projects.

Design Innovation
The Make-A-Bridge® pedestrian bridge design is ideal for new construction, renovations or retrofits of existing bridges, and may be used in temporary or permanent applications for indoor or outdoor venues. The sleek, modular design is visually appealing, integrating well with any architectural style. Eliminating welds means each structure is completely free of thermally affected zones, which strengthens structural integrity.

MAADI Group’s patented, weld-free modular pedestrian bridge system is designed to assemble “Meccano®-style” into load-bearing spans of up to 60 feet via moment resisting tri-pod node joints. Our interlocking component design enables quick-ship bundles to be conveniently transported on standard-size trailers. Make-A-Bridge® delivery is 8 to 12 times faster than conventional welded bridges, transporting bundles to remote or difficult-to-access locations. On the job site, components are easily unloaded, assembled and installed with minimal labor and tools.

Quality Assurance
Make-A-Bridge® manufacturing is ISO9001:2008 accredited and certified. Our product is produced to the highest and most rigorous quality standards in our industry.

Aluminum: the Better Material Choice
Award-winning Make-A-Bridge® is made from high-strength aluminum alloy for a sustainable and cost-effective structure that is highly resistant to atmospheric corrosion. Aluminum’s inherent properties make it light yet strong and architecturally pleasing. Aluminum is 100% recyclable and reusable, retaining all of its strength and mechanical properties upon deconstruction. Versatile aluminum may be extruded into infinite shapes, including complex hollow & semi-hollow design options.

Load-bearing, structurally stiff aluminum components resist deformation caused by live loads, climate or movement. Aluminum’s tensile strength and structural stiffness combine to make it the ideal pedestrian bridge building material – a high strength-to-weight ratio makes aluminum one of the strongest construction materials available, yet it is 40% lighter than steel. Aluminum forms its own naturally protective coating and will not rust, degrade, warp or become brittle over time, even under extreme temperature and humidity conditions.
MAADI Group Professional Engineers are experts in aluminum pedestrian bridge design. We design, fabricate and manufacture our patented Make-A-Bridge® at our facilities in Boucherville, Québec, to the highest engineering and design standards.

Sustainability

MAADI Group is committed to implementing the sustainable benefits of Make-A-Bridge® to improve the environment in every community where our pedestrian bridges are used. Make-A-Bridge® incorporates the sustainable design principles of energy conservation, use of recyclable materials, greater functionality and design flexibility, and enhancing the built environment with durability that lasts for decades.

Make-A-Bridge® sustainable benefits:
- Natural material requires no maintenance and meets environmental responsibility requirements
- 100% recyclable, with high resale scrap value at the end of its lifespan
- Recycling aluminum scrap requires only 5% of the energy used to make new aluminum
- Extruded truss sections use recycled aluminum content
- Fully reusable upon deconstruction without any loss of strength or mechanical properties
- Reduced energy use and reduced pollution during transport due to reduced self-weight (60% of equivalent steel)

Make-A-Bridge® maximizes functionality and minimizes environmental impacts by providing safe access for pedestrians and bicycle riders and reducing traffic congestion.

Make-A-Bridge® is cost-effective to build, install and use throughout its life cycle. Replacing or retrofitting existing bridges with Make-A-Bridge® adds longevity to sustainable green development projects. Design flexibility and custom options enable Make-A-Bridge® to be environmentally compatible with adjacent structures and with its natural surroundings.

Awards Received

The Make-A-Bridge® modular pedestrian bridge system has received design and innovation awards since 2006. MAADI Group is honored to have our premier bridge product acknowledged for its innovation within the Design/Build community.

2013
Winner
Product Innovation Award: Architectural Products Magazine

2010
Finalist
Génie Innovation

2009
New Technology Prize
Québec Region, Canadian Manufacturers & Exporters and CNRC-PAR1
Honorable Mention
Contech Innovation Trophies
Finalist
Among 487 firms participating in the VoirGRAND.tv competition

2008
First International Prize
Extrusion Technology for Aluminum Profiles (ET) Foundation at the 9th International Aluminum Extrusion Seminar & Exposition

2006
Finalist
Les Anges financiers competition, Montréal
Technical Specifications
The advantages of designing in aluminum, and the technical specifications and parameters required throughout production, assembly, transport, and installation demonstrate our rigorous attention to detail and dedication to consistent quality that is achieved in the development and support of the Make-A-Bridge® product.
Advantages

Make-A-Bridge® is a weld-free modular secure bridge system that is assembled “Meccano®-style”. Its structural design allows pedestrian bridge construction in spans of up to 60 feet (18.3 meters) and adapts to a wide variety of project scopes.

Design and Materials
- 100% recyclable aluminum structural components
- Meets standards of North American and other Western nations
- Includes complete engineering services, eliminating all of the costly phases of design, customized production and approval generally required for conventional structures
- Corrosion-free
- No welding – the aluminum maintains its full structural integrity
- Easy to add anodized or baked paint durable architectural finishes
- Fasteners in stainless steel 300 series
- Various decking materials available

Assembly and Installation
- Easily assembled in just a few hours
- Integrates well with new construction, renovations and retrofits of existing structures
- Lighter and easier to install than competitive steel, wood or concrete products
- Meets a range of architectural requirements
- Enhances outdoor and indoor environments with a variety of colors, finishes and options to choose from

Labor
- Assembled on site by 3 people with standard tools and equipment
- Typical footbridge (30’ – 9m) assembly in about 5 hours
- Requires a small crane with a capacity of approx. 3500lb – 1600kg

Dead Load
- 9 - 15lb/sq ft. – 44 - 73kg/m²

Live Load
- 2-ton vehicles (i.e., golf carts, ATVs, snowmobiles)
- 50 - 100lb/sq ft. – 2.4kPa - 4.8kPa
- Deflection between L/500 and L/240

Maintenance
- Maintenance-free structure is highly cost-effective, compared with steel when the Total Cost of Ownership is considered

Vandalism
- Anti-theft/anti-vandalism fasteners and nodes
- Very easy to remove graffiti by brushing or sanding bare Aluminum, compared to steel that has a protective coating
Technical Specifications

Shipping
- Digitally produced and shipped in separate parts. Deployable in a range of geometries that can be delivered and installed in far less time than competitive products
- Much lower shipping costs than conventional structures
- Make-A-Bridge® delivered in bundles to your construction site, (bundle dimensions: 20’ x 4’ x 2’ – 6.1m x 1.2m x 0.6m
- Maximum weight of each member is 110lb – 50kg

Warranty
15-year manufacturer’s limited warranty against corrosion of the aluminum main load-bearing structure.

Additional Characteristics
- Standard off-the-shelf components available in 2 to 3 weeks, ready to be shipped flat anywhere in North America, and in 4 to 6 weeks anywhere worldwide
- Built to international standards, including American and Canadian codes (AASHTO, ASCE and CSA)
- LED lighting solutions available
- Variety of finishes/colors available, including anodized and baked paint

Patents
- US 7,568,253; US 7,882,586
- US 8,590,084; US 8,667,633
- Other patents pending

Partners
Our nationally and internationally renowned partners, Alcoa Canada and the Centre québécois de recherche et de développement de l'aluminium (CQRDA) support the development of Make-A-Bridge®.
Live Load Capacity psf (kPa)

<table>
<thead>
<tr>
<th>Target use</th>
<th>Width</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Bicycles, pedestrians and lightweight vehicles</td>
<td>3’ 0.9m</td>
<td>35’ 10.7m</td>
</tr>
<tr>
<td>- Minimum height 54” – 1372mm</td>
<td>4’ 1.2m</td>
<td>40’ 12.2m</td>
</tr>
<tr>
<td>- Minimum height 54” – 1372mm</td>
<td>5’ 1.5m</td>
<td>45’ 13.7m</td>
</tr>
<tr>
<td>- Minimum height 54” – 1372mm</td>
<td>6’ 1.8m</td>
<td>50’ 15.2m</td>
</tr>
<tr>
<td>- Minimum height 54” – 1372mm</td>
<td>35’ 10.7m</td>
<td>55’ 16.8m</td>
</tr>
<tr>
<td>- Minimum height 54” – 1372mm</td>
<td>40’ 12.2m</td>
<td>60’ 18.3m</td>
</tr>
<tr>
<td>- Minimum height 54” – 1372mm</td>
<td>45’ 13.7m</td>
<td>16.8m</td>
</tr>
<tr>
<td>- Minimum height 54” – 1372mm</td>
<td>50’ 15.2m</td>
<td>18.3m</td>
</tr>
<tr>
<td>- Minimum height 54” – 1372mm</td>
<td>55’ 16.8m</td>
<td>18.3m</td>
</tr>
<tr>
<td>- Minimum height 54” – 1372mm</td>
<td>60’ 18.3m</td>
<td>18.3m</td>
</tr>
</tbody>
</table>

Target use

- Pedestrians and lightweight vehicles
- Minimum height 42” – 1067mm

Color Codes

- 100psf – 4.8kPa
- 50psf – 2.4kPa
Destructive Testing

On August 13, 2009, a destructive structural test was conducted at the University of Waterloo, Waterloo, Ontario, Canada (U of W) in the Department of Civil and Environmental Engineering Structures Laboratory to determine the maximum load capacity of a Make-A-Bridge® modular bridge system. Testing took place under the supervision of Professors, Dr. Scott Walbridge, P.Eng., and Dr. Sriram Narasimhan, P.Eng., along with Graduate Student researchers, Doctoral candidate Pampa Dey, and Master’s graduate student Ann Sychterz.

The specimen consisted of a 20’ long by 2’ wide aluminum pony-truss structure, fabricated using aluminum extruded sections and cast joints developed by MAADI Group, Inc. The size was reduced to fit the specimen in the U of W test frame.

The load was introduced via a “load tree” which consisted of two simply supported steel I-beams loaded to facilitate the splitting of the jack load (i.e., the total load) into three equal point loads, to be introduced at each of the three interior panel points of the truss. The three point loads were introduced via machined aluminum bearing pads. The specimen sat on two end supports, one pin and one roller.

→ Watch the video

Test Data

This curve shows the initial linear behavior. Softening of the specimen occurs very gradually, making it difficult to identify a load coinciding with the onset of non-linear behavior. The peak total load obtained was 183kN (41.0 kips). At this load, vertical deflection at the mid-span was approximately 61mm. The specimen exhibited some ductility beyond this peak load; final failure occurred at a total load of 157kN (35.2 kips) and a mid-span deflection of approximately 80mm.
Vibration Testing

Beginning in Spring, 2014, vibration testing is ongoing at the University of Waterloo in Waterloo, Ontario, Canada, in the Department of Civil and Environmental Engineering Structures Laboratory.
Supervised Testing

Testing will determine how vibrations from crowd loading impact the Make-A-Bridge® pedestrian footbridge’s key joints and structural integrity by measuring acceleration responses for various bridge span lengths. Vibration testing is taking place under the supervision of Professors, Dr. Scott Walbridge, P. Eng., and Dr. Sriram Narasimhan, P. Eng., along with Graduate Student researchers, Doctoral candidate Pampa Dey, and Master’s graduate student Ann Sychterz.

Test Set-Up & Parameters

The footbridge specimens consist of spans varying from 10’ (3m) to 70’ (21m) in overall length. Assembled Make-A-Bridge® aluminum pedestrian bridge modules are fabricated with extruded aluminum sections and cast aluminum joints designed and developed by the MAADI Group, Inc. structural engineering firm of Boucherville, Québec.

Bridge test spans have been instrumented with triple-axis load cells at the bridge’s four supports, with vibration gauges at key locations to measure vibration strains, and 12 accelerometers to measure bridge acceleration responses. Bridge length is adjusted to see how vibration effects change under loads as the span changes. Laboratory tests include strain measurements from up to 30 students at a time walking across the bridge. Footbridge span, deck weight, boundary conditions, and loading characteristics were varied to generate data under dynamic loading conditions.

Results from this ongoing Vibration Study will enable engineers to design and build pedestrian bridges to best withstand crowd loading and strains caused by heavy pedestrian use.
Customization
Make-A-Bridge® spans may be constructed in lengths of up to 60' (18.3m), and may be customized to adapt to a wide variety of indoor or outdoor project applications. Various configurations, including customized bridge ends, guardrails, side panels, decking materials, colors, anodized or baked paint finishes, and LED lighting options are available.
Bridge End Configuration

Make-A-Bridge® railing designs offer three different bridge end configurations to suit the aesthetic and practical needs of your project. Whether adjacent to other structures or freestanding, our bridges utilize railing end designs that feature strong, durable and maintenance-free aluminum components.

Length Detail

Overall length is measured by length of bottom chord

↑ Swan neck application – Bota Bota Spa sur l’eau Gangways Project, Montréal, Québec
Vertical End Post – 2 bends

Applications
- Bridges, building walkways, marina gangways

Vertical End Post – 1 bend

Applications
- Bridges, building walkways, marina gangways

Swan Neck – 1 bend

Applications
- Bridges, walkways, marina gangways
Glass panel application with the option of LED lighting - Emergency Exit QMD Project, Montréal, Québec
Guardrail

Whether your Make-A-Bridge® will be used in an industrial plant, an office building, a park, or a marina, our high-strength aluminum alloy guardrail systems are corrosion-free and can be counted on for strength and long-term durability. All guardrails meet American and Canadian codes.

Aluminum Vertical Pickets

Applications
- Bridges, building walkways

Specifications
- Pickets are made of aluminum
- Less than 4” – 100mm between pickets - Building codes
- Less than 6” – 150mm between pickets - Bridge codes

Aluminum Midrail

Applications
- Marina gangways, industrial walkways
- Trail bridges in remote sites

Aluminum Horizontal Railings

Applications
- Pedestrian/bike and light vehicle bridges
- Not intended for buildings

Specifications
- Openings are less than 6” – 150mm between railings - Bridge codes
Structure Connection

Four different structure connection systems are available to facilitate movements or specified amounts of expansion and contraction for your bridge installation. Each connection system will be best suited for a particular application, as specified by MAADI Group Professional Engineers.

Anchor and Bearing Plate

Specifications
- Bearing plates allow thermal expansion on one end of the bridge
- Stainless steel anchors kit with adhesive cement included
- Isolators included
Roller and Plate System

Specifications
- System allows lateral and vertical movement (usually required to link a chain anchored floating dock to land)

Flexible Connector

Specifications
- Connector allows small vertical movement (usually required to link a pile anchored floating dock to the land)

Roller and Rail System

Specifications
- Usually used in conjunction with roller and plate system or flexible connector on the land side
- Rails are made of aluminum
- Wheels are made of UHMW
- Easy to install
Decking Materials

Choose from a variety of decking materials, based on where and how your Make-A-Bridge® will be used. Each type of material has specified levels of durability, slip and skid resistance, decay resistance, and degree of maintenance.

IPE Hardwood Planks

<table>
<thead>
<tr>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural (highly aesthetic)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum 40-year lifespan</td>
</tr>
<tr>
<td>Low maintenance, no treating or sealing required for durability (treating may be required to keep rich, red color)</td>
</tr>
<tr>
<td>Medium grip surface</td>
</tr>
<tr>
<td>Eco-friendly and naturally insect resistant</td>
</tr>
<tr>
<td>Heavy use outdoor applications</td>
</tr>
<tr>
<td>Economical over life of the bridge/structure</td>
</tr>
</tbody>
</table>

Pressure-Treated Pine Wood Planks

<table>
<thead>
<tr>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average 15-year lifespan</td>
</tr>
<tr>
<td>Maintenance required – treat with water repellent every 2 years</td>
</tr>
<tr>
<td>Natural finish requires UV protection – apply a semi-transparent stain or clear sealer</td>
</tr>
<tr>
<td>Medium grip surface</td>
</tr>
<tr>
<td>Standard use outdoor applications</td>
</tr>
<tr>
<td>Most economical initial material cost</td>
</tr>
</tbody>
</table>

Extruded Aluminum Transversal Planks

<table>
<thead>
<tr>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlimited lifespan with regular cleaning</td>
</tr>
<tr>
<td>Maintenance-free – no treatments or sealers required</td>
</tr>
<tr>
<td>Natural mill finish – no paints or coatings required</td>
</tr>
<tr>
<td>High grip surface</td>
</tr>
<tr>
<td>100% recyclable and reusable</td>
</tr>
<tr>
<td>Corrosion-free – will not rust</td>
</tr>
<tr>
<td>Economical over life of the bridge/structure</td>
</tr>
</tbody>
</table>
MAADI Professional Engineers can select the decking surface that best meets your needs for wear, safety, and maintenance according to your application.

Grip Span Planks

Applications
- Industrial

Specifications
- Optimal grip surface
- Low/no maintenance
- Safety grating planks have serrated edges
- Safety grating has diamond-shaped openings
- Planks have integral side channels
- Made from aluminum alloy

Shur Grip Planks

Applications
- Industrial

Specifications
- High grip surface
- Low/no maintenance
- Safety grating planks have debossed holes, each surrounded by 6 perforated buttons
- Safety grating planks have integral side channels
- Made from aluminum alloy

Bar Grating

Applications
- Industrial

Specifications
- Low grip surface
- Low/no maintenance
- Safety bar gratings are single-unit construction
- Serrated Tru-weld available for extra grip on bearing bars
- Made from aluminum alloy
Decking Materials - Comparison Charts

Maintenance, durability, adherence (non-slip surface), and sustainability should be considered when choosing the most suitable decking material for your project.

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPE Hardwood Planks</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pressure-Treated Pine Wood Planks</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extruded Aluminum Transversal Planks</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grip Span Planks</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shur Grip Planks</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Grating</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPE Hardwood Planks</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pressure-Treated Pine Wood Planks</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extruded Aluminum Transversal Planks</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grip Span Planks</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shur Grip Planks</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Grating</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Adherence

<table>
<thead>
<tr>
<th>Material</th>
<th>Low</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPE Hardwood Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure-Treated Pine Wood Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extruded Aluminum Transversal Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grip Span Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shur Grip Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Grating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sustainability

<table>
<thead>
<tr>
<th>Material</th>
<th>Low</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPE Hardwood Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure-Treated Pine Wood Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extruded Aluminum Transversal Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grip Span Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shur Grip Planks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bar Grating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transition Plate

Curved or flat transition plates are designed to facilitate a smooth and slip-free surface from the footbridge to the adjacent surface. Tread patterns for each plate may be chosen to best suit the environment and application.

Specifications
- When using roller and plate system, transition plate comes with frictionless edge to protect decking surface
- Aluminum diamond plate texture or plain with anti-slip tread bars
- Different tread patterns are available
Specifications
- When using roller and rail system, transition plate comes with frictionless edge to protect decking surface. Not necessary in the case of anchor and bearing plate system
- Aluminum diamond plate texture
- Different tread patterns are available
Options

Various options may be selected to enhance safety, security and aesthetic appearance. Aluminum kickplates, handrails, integrated LED lighting, and anodized or baked paint finish options are offered to further customize your Make-A-Bridge® to best suit the application and the surrounding environment.

Aluminum Kickplate

Specifications
- Height of 4” (100 mm)

Aluminum Handrail

Specifications
- Handrail diameter: 1.66” (43 mm)
- 2” (50 mm) hand clearance
- Height of handrail: 34” to 38” (863 mm to 965 mm)

LED Lighting System

Yellow shown

Specifications
- RGB or white LED
- Programmable
Powder Coat Finish

Yellow shown

Specifications
- Made of powdered polyester resin
- Baked as per specifications
- Meets American Architectural Manufacturers Association (AAMA) standards
- Uses RAL colors
- Can match any color or finish needed
- Not recommended for use on midrail, horizontal railing and aluminum decking

Anodized Finish

Champagne 101 shown

Specifications
- Meets all requirements of the Aluminum Association (AA) for the anodized architectural aluminum;
- Only extruded parts can be anodized

Color Choices

- Clear
- Black 109
- Champagne 101
- Light bronze 103
- Architectural bronze 106
Applications
The Make-A-Bridge® modular aluminum pedestrian bridge system may be used wherever footbridge access infrastructure is needed, indoors or outdoors. In the following pages, we present a wide variety of applications where Make-A-Bridge® structures are fully customized to meet the needs of your project.
Military
Infrastructure that Fortifies the Mission

The Make-A-Bridge® weld-free system is structurally strong and easy to assemble, even on rough terrain in extreme temperature and weather conditions.
Strength. Mobility. Endurance.

Made with high-strength, lightweight and corrosion-free aluminum, the Meccano®-style Make-A-Bridge® modular design offers adaptable infrastructure that makes military forces more mobile, and gives operations personnel better access to equipment, supplies and strategic locations.

Single span
10'-0" to 60'-0" – 3.0m to 18.0m

Bridge dead load
10 to 15 psf – 0.5 to 0.72kPa

Each element maximum weight
110lb – 50kg

Options
Integrated handrails, kick plates, LED lighting, non-slip decking and side panels that offer added safety benefits
Architectural Infrastructure for Modern Interior Access

Make-A-Bridge® Modular Bridge System

Make-A-Bridge® footbridges enable building designers to create open, modern interior corridors for streamlined pedestrian access in all types of commercial and public spaces.

Our patented weld-free Make-A-Bridge® design meets the highest structural and aesthetic standards, conforming to all local and national building codes. Modular interlocking components install directly into a building’s interior. It is easy to assemble the structure inside a building, independently of the final size.

Customize the look of your aluminum Make-A-Bridge® components by choosing from colorful and durable anodized or baked paint finishes that coordinate with building décor.

<table>
<thead>
<tr>
<th>Single span</th>
<th>Bridge dead load</th>
<th>Each element maximum weight</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>10'-0” to 60'-0” – 3.0m to 18.0m</td>
<td>10 to 15 psf – 0.5 to 0.72kPa</td>
<td>110lb – 50kg</td>
<td>Integrated handrails, kick plates, LED lighting, non-slip decking and side panels that offer added safety benefits</td>
</tr>
</tbody>
</table>
The Make-A-Bridge® modular, weld-free system may be easily cantilevered to existing bridges as part of roadway bridge renovation projects to provide a safe, economical footbridge for pedestrian and bicycle traffic.
Strength. Safety. Endurance.

The lightweight aluminum Make-A-Bridge® structure attaches directly to existing bridge piles instead of to the roadway (bridge deck). Typical roadway bridges are too narrow to accommodate safe pedestrian and bike access. Make-A-Bridge® creates a dedicated pathway for pedestrians and cyclists, greatly improving safety for users and allowing better traffic flow for drivers on the main bridge roadway.

Single span

10'-0" to 60'-0" – 3.0m to 18.0m

Bridge dead load

10 to 15 psf – 0.5 to 0.72kPa

Each element maximum weight

110lb – 50kg

Options

Integrated handrails, kick plates, LED lighting, non-slip decking and side panels that offer added safety benefits
Industrial
Infrastructure that Enhances Efficiency

Make-A-Bridge® modular aluminum gangways provide convenient, secure access for personnel and equipment in industrial plants or manufacturing facilities.
Strength. Reliability. Safety.

These versatile Meccano®-style footbridges are lightweight, strong and adaptable structures that provide safe and durable gangways that handle foot and light vehicle traffic to access goods or maintenance equipment, oversee operations and provide efficient connections between loading and storage areas, offices and control centers within your facility.

Make-A-Bridge® aluminum modular utility and service bridges are installed in place with existing fixtures and are structurally strong, low maintenance and corrosion resistant. It is easy to assemble the structure inside a building independently of the final size.

Single span
10'-0" to 60'-0" – 3.0m to 18.0m

Bridge dead load
10 to 15 psf – 0.5 to 0.72kPa

Each element maximum weight
110lb – 50kg

Options
Integrated handrails, kick plates, LED lighting, non-slip decking and side panels that offer added safety benefits
Maritime
Infrastructure for Functional Marine Access

Make-A-Bridge® gangways install securely and easily with new or existing marine facilities.

Make-A-Bridge® lightweight, strong and low-maintenance structures are durable in harsh marine environments, and are impervious to corrosion from salt, chemicals and pollution. Our modular aluminum bridge system meets all prescribed structural codes, and provides safe access for pedestrians and light vehicles. Make-A-Bridge® is offered in aesthetically pleasing color anodized or baked paint finishes that complement surrounding marina structures.

Customize your Make-A-Bridge® gangway by choosing from non-slip decking, canopy/tension roof and integrated LED lighting options to suit your needs.

<table>
<thead>
<tr>
<th>Single span</th>
<th>Bridge dead load</th>
<th>Each element maximum weight</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>10'-0" to 60'-0" – 3.0m to 18.0m</td>
<td>10 to 15 psf – 0.5 to 0.72kPa</td>
<td>110lb – 50kg</td>
<td>Integrated handrails, kick plates, LED lighting, non-slip decking and side panels that offer added safety benefits</td>
</tr>
</tbody>
</table>
Park & Golf Course
Infrastructure to Enhance the Landscape

Make-A-Bridge® pre-fabricated modules are easy to install in recreational settings such as parks, golf courses, playgrounds, or nature preserves.

Bundled footbridge components are delivered on standard-size palettes to your site and assembled without specialized tools or labor, reducing transportation and installation costs. Interlocking aluminum components form a lightweight, structurally strong footbridge that withstands heavy daily use by pedestrians, bicyclists and golfers using carts in all weather conditions.

Corrosion-free and maintenance-free aluminum endures for decades of use outdoors, and complements natural surroundings with a variety of durable finish options available.

Single span
10'-0" to 60'-0"
3.0m to 18.0m

Bridge dead load
10 to 15 psf – 0.5 to 0.72kPa

Each element maximum weight
110lb – 50kg

Options
Integrated handrails, kick plates, LED lighting, non-slip decking and side panels that offer added safety benefits
Skywalk
Infrastructure for Emergency Evacuation

Interlocking aluminum components provide a safe pedestrian skywalk between multi-story buildings for evacuation in case of fire or emergency.
Strength. Reliability. Safety.

Make-A-Bridge® requires no major modifications to an existing structure for its installation. Each aluminum member weighs less than 110lb (50kg), making modules easy to manipulate, transport, assemble and install.

It is easy to assemble the structure on a roof by bringing each member independently onto the roof. The structure can be used as a fire exit, to evacuate people from one building to another.

Practical options such as side panels, non-slip decking and built-in LED lighting help to ensure a safe and reliable walkway. Make-A-Bridge® aluminum skywalks feature durable maintenance-free finishes. Components are designed and built to enhance green building objectives, while meeting all local and national building and fire codes.

<table>
<thead>
<tr>
<th>Single span</th>
<th>Bridge dead load</th>
<th>Each element maximum weight</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>10'-0" to 60'-0" – 3.0m to 18.0m</td>
<td>10 to 15 psf – 0.5 to 0.72kPa</td>
<td>110lb – 50kg</td>
<td>Integrated handrails, kick plates, LED lighting, non-slip decking and side panels that offer added safety benefits</td>
</tr>
</tbody>
</table>
Entryway
Infrastructure for All-Weather Access

Make-A-Bridge® is designed to be quickly transported and easily assembled and installed for an all-weather access footbridge that is delivered on time and on budget.

Make-A-Bridge® weld-free modular extruded and cast aluminum components are maintenance-free and corrosion-free in year-round weather conditions, even in extreme heat and cold, snow, ice, wind and rain, or when exposed to corrosive chemicals and pollutants.

The Make-A-Bridge® structure withstands environmental challenges using high-strength structural aluminum that is versatile, adaptable and durable. Customized bridge span lengths and options such as side panels, kickplates, handrails, non-slip decking and integrated LED lighting add value and resilience to form and function.

<table>
<thead>
<tr>
<th>Single span</th>
<th>Bridge dead load</th>
<th>Each element maximum weight</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>10'-0" to 60'-0"</td>
<td>10 to 15 psf – 0.5 to 0.72kPa</td>
<td>110lb – 50kg</td>
<td>Integrated handrails, kick plates, LED lighting, non-slip decking and side panels that offer added safety benefits</td>
</tr>
</tbody>
</table>